首页> 外文OA文献 >Multistage stochastic programming: A scenario tree based approach to planning under uncertainty
【2h】

Multistage stochastic programming: A scenario tree based approach to planning under uncertainty

机译:多阶段随机规划:不确定性下基于场景树的规划方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this chapter, we present the multistage stochastic programming framework for sequential decision making under uncertainty. We discuss its differences with Markov Decision Processes, from the point of view of decision models and solution algorithms. We describe the standard technique for solving approximately multistage stochastic problems, which is based on a discretization of the disturbance space called scenario tree. We insist on a critical issue of the approach: the decisions can be very sensitive to the parameters of the scenario tree, whereas no efficient tool for checking the quality of approximate solutions exists. In this chapter, we show how supervised learning techniques can be used to evaluate reliably the quality of an approximation, and thus facilitate the selection of a good scenario tree. The framework and solution techniques presented in the chapter are explained and detailed on several examples. Along the way, we define notions from decision theory that can be used to quantify, for a particular problem, the advantage of switching to a more sophisticated decision model.
机译:在本章中,我们提出了不确定性下顺序决策的多阶段随机规划框架。我们将从决策模型和解决方案算法的角度讨论其与Markov决策过程的差异。我们描述了一种用于解决近似多阶段随机问题的标准技术,该技术基于称为场景树的扰动空间的离散化。我们坚持该方法的一个关键问题:决策对方案树的参数可能非常敏感,而没有一种有效的工具来检查近似解的质量。在本章中,我们将说明如何使用监督学习技术来可靠地评估近似值的质量,从而有助于选择好的场景树。本章介绍的框架和解决方案技术将在几个示例中进行解释和详细说明。在此过程中,我们从决策理论定义了一些概念,这些概念可用于量化针对特定问题的切换到更复杂的决策模型的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号